A First Course on Kinetics and Reaction Engineering

Class 16 on Unit 16

五

Where We're Going

- Part I - Chemical Reactions
- Part II - Chemical Reaction Kinetics
- A. Rate Expressions
b B. Kinetics Experiments
- C. Analysis of Kinetics Data
- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis
- Part III - Chemical Reaction Engineering
- Part IV - Non-Ideal Reactions and Reactors

Numerical Least Squares

- When a single-response model equation cannot be linearized, numerical least squares may offer a solution
- You'll need to provide the experimental set and response variable data, a guess for each model parameter and code that calculates the model predicted response for a data point, given the model parameters and the set variable values for that data point
- When a single-response model equation cannot be analytically integrated or explicitly solved for the response variable, numerical least squares may offer a solution
- Also if the model is a set of algebraic equations or a set of initial value, ordinary differential equations
- The model equation(s) will need to be solved numerically
- In the code above, you will need to call an appropriate equation solver
- You will need to provide additional input items
- guesses for the solution (algebraic equations) or initial/final values (ODEs)
- code to evaluate the equations being solved
- The code you provide above must use these results to calculate the model predicted response
- Trade-offs
- Linear least squares requires analytical integration (for ODE models), linearization and calculation of re-defined set and response variables, but the parameters are calculated directly
- Numerical least squares eliminates the need to integrate ODEs, linearize equations and calculate re-defined variables, but finding the parameters requires a guess
- If the guess is not close enough, the method may fail to find values for the parameters

Analyzing Multiple Response Data

- When multiple response data are involved
- You can't use numerical least squares fitting routines provided by common mathematics software packages
- they are written to minimize the sum of the squares of the errors in a single response variable
- Instead, you will need to
- decide what objective function is an appropriate replacement for the sum of the squares of the errors and provide code to calculate it, given the experimental and model-predicted responses
- use a numerical minimization routine instead of a numerical least squares routine
- most mathematics software packages provide several
- calculate statistical quantities such as correlation coefficients and 95% confidence intervals yourself
- The solution of the model equations and calculation of the model-predicted response can be done numerically as described on the last slide.
- A simple sum of the squares of the errors of all responses is almost never the appropriate objective function to minimize when finding the best values for the parameters
- i. e. do not use

$$
\Phi=\sum_{\substack{j=\text { all } \\ \text { data } \\ \text { points }}}\left[\left(y_{1, \text { model }}-y_{1, \text { expt. }}\right)_{j}^{2}+\left(y_{2, \text { model }}-y_{2, \text { expt. }}\right)_{j}^{2}\right]
$$

- If every response has been measured in every experiment (dense response matrix) and the errors can be assumed to be Normally distributed, minimize this determinant

$$
\Phi=\left|\begin{array}{cccc}
\sum_{\text {all }}\left(\varepsilon_{1 j}\right)^{2} & \sum_{\text {all }} \varepsilon_{1 j} \varepsilon_{2 j} & \cdots & \sum_{\text {all }} \varepsilon_{1 j} \varepsilon_{n j} \\
\sum_{\text {allj }} \varepsilon_{1 j} \varepsilon_{2 j} & \sum_{\text {allj }}\left(\varepsilon_{2 j}\right)^{2} & \cdots & \sum_{\text {all }} \varepsilon_{2 j} \varepsilon_{n j} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{\text {allj }} \varepsilon_{1 j} \varepsilon_{n j} & \sum_{\text {allj }} \varepsilon_{2 j} \varepsilon_{n j} & \cdots & \sum_{\text {all }}\left(\varepsilon_{n j}\right)^{2}
\end{array}\right|
$$

$$
\varepsilon_{i j}=\left(y_{i, \text { model }}-y_{i, \text { expt. }}\right)_{j}
$$

Questions?

Activity 15.2

The gas phase, isothermal decomposition shown in reaction (1), was studied at 1150 K and 1 atm pressure using a PFR.
$2 \mathrm{~A} \rightarrow 2 \mathrm{Y}+\mathrm{Z}$
The feed was pure A, and the tubular reactor had a volume of $150 \mathrm{~cm}^{3}$. The inlet flow rate was varied and the outlet partial pressure of Z was measured. The data are tabulated in the table to the right.

Group 1: Test the adequacy of $r_{A}=-k \cdot C_{A}$ as a rate expression.

Group 2: Test the adequacy of $r_{A}=-k \cdot C_{A}{ }^{2}$ as a rate expression.

Inlet Feed Rate $\left(\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$	Outlet Mole Fraction of Z
2.26	0.088
1.23	0.131
0.73	0.166
0.51	0.195
0.29	0.228
0.17	0.260
0.09	0.287

Recall the Solution Process from Class 15

- Read through the problem statement and each time you encounter a quantity, assign it to the appropriate variable
- Write the mole balance design equation for the reactor used in the experiments
- Substitute the rate expression to be tested into the design equation
- Integrate the mole balance
- Identify the dependent and independent variables
- Identify any other variable quantities appearing in the mole balance
- Express the other variables in terms of the dependent variable and the independent variable
- Substitute for the other variables in the design equation so only the dependent and independent variables remain
- Separate the variables
- Integrate the design equation
- Linearize the integrated design equation
- Calculate the values of y and x for each experimental data point
- Fit the linear model to the corresponding $x-y$ data
- Decide if the fit is acceptable and report the values and uncertainties for the kinetic parameters

Mole Balance Design Equation

- Mole balance on A: $\frac{d \dot{n}_{A}}{d z}=\frac{\pi D^{2}}{4} r_{A}$
- Substitute the rate expressions

$$
\frac{d \dot{n}_{A}}{d z}=\frac{-\pi D^{2}}{4} k C_{A}
$$

$$
\frac{d \dot{n}_{A}}{d z}=\frac{-\pi D^{2}}{4} k C_{A}^{2}
$$

- Prepare for integration
- Definition of concentration and ideal gas law: $C_{A}=\frac{\dot{n}_{A}}{\dot{V}}=\frac{\dot{n}_{A} P}{\dot{n}_{t o t} R T}$

$$
\begin{aligned}
&-\dot{n}_{A}=\dot{n}_{A}^{0}-2 \xi \Rightarrow \quad \xi=\frac{\dot{n}_{A}^{0}-\dot{n}_{A}}{2} \\
&-\dot{n}_{\text {tot }}=\dot{n}_{A}^{0}+\xi \Rightarrow \\
& \hline \text { tot }=\frac{3 \dot{n}_{A}^{0}-\dot{n}_{A}}{2}
\end{aligned}
$$

- Substituting

$$
\frac{d \dot{n}_{A}}{d z}=\frac{-\pi D^{2} k P}{2 R T} \frac{\dot{n}_{A}}{3 \dot{n}_{A}^{0}-\dot{n}_{A}}
$$

$$
\frac{d \dot{n}_{A}}{d z}=\frac{-\pi D^{2} k P^{2}}{R^{2} T^{2}} \frac{\dot{n}_{A}^{2}}{\left(3 \dot{n}_{A}^{0}-\dot{n}_{A}\right)^{2}}
$$

- Separate the variables and integrate

$$
\begin{array}{ll}
\int_{n_{A}^{0}}^{n_{A}} \frac{3 \dot{n}_{A}^{0}-\dot{n}_{A}}{\dot{n}_{A}} d \dot{n}_{A}=\frac{-\pi D^{2} k P}{2 R T} \int_{0}^{L} d z & \int_{n_{A}^{0}}^{n_{A}}\left(\frac{3 \dot{n}_{A}^{0}-\dot{n}_{A}}{\dot{n}_{A}}\right)^{2} d \dot{n}_{A}=\frac{-\pi k}{2}\left(\frac{D P}{R T}\right)^{2} \int_{0}^{L} d z \\
\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right)-3 \dot{n}_{A}^{0} \ln \left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)=\frac{\pi D^{2} k P L}{2 R T} & 9\left(\dot{n}_{A}^{0}\right)^{2}\left(\frac{1}{\dot{n}_{A}}-\frac{1}{\dot{n}_{A}^{0}}\right)+6 \dot{n}_{A}^{0} \ln \left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)-\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right) \\
& =\frac{-\pi k L}{2}\left(\frac{D P}{R T}\right)^{2}
\end{array}
$$

$\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right)-3 \dot{n}_{A}^{0} \ln \left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)=\frac{\pi D^{2} k P L}{2 R T} \quad 9\left(\dot{n}_{A}^{0}\right)^{2}\left(\frac{1}{\dot{n}_{A}}-\frac{1}{\dot{n}_{A}^{0}}\right)+6 \dot{n}_{A}^{0} \ln \left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)-\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right)=\frac{-\pi k L}{2}\left(\frac{D P}{R T}\right)^{2}$

- Neither equation can be properly linearized for fitting by linear least squares
- Each equation has only one parameter, k
- Rearrange to get expression for k
- Calculate value of k for each data point
- Find average k and its standard deviation
- Check that standard deviation is small compared to average and there are no trends in the differences between individual k values and the average
- To calculate k
- P and T are given, R is a known universal constant
- Note that $\pi \cdot D^{2} \cdot L=4 \cdot V$, and V is given
- Feed is pure A, so $\dot{n}_{A}^{0}=\frac{P \dot{V}^{0}}{R T}$
- From mole table or definition of extent of reaction
- $\xi=\frac{\dot{n}_{A}^{0}-\dot{n}_{A}}{2} \quad$ (previous slide)
$-y_{Z}=\frac{\dot{n}_{Z}}{\dot{n}_{\text {tot }}}=\frac{\xi}{\dot{n}_{A}^{0}+\xi}=\frac{\dot{n}_{A}^{0}-\dot{n}_{A}}{2 \dot{n}_{A}^{0}+\dot{n}_{A}^{0}-\dot{n}_{A}}=\frac{\dot{n}_{A}^{0}-\dot{n}_{A}}{3 \dot{n}_{A}^{0}-\dot{n}_{A}} \quad \Rightarrow \quad \dot{n}_{A}=\dot{n}_{A}^{0} \frac{1-3 y_{Z}}{1-y_{Z}}$

Results

Inlet Feed Rate $\left(\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$	Outlet Mole Fraction of Z	First Order k $\left(\mathrm{~min}^{-1}\right)$	Second Order k $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}\right)$
2.26	0.088	0.0034	753
1.23	0.131	0.0032	787
0.73	0.166	0.0027	759
0.51	0.195	0.0026	797
0.29	0.228	0.0020	750
0.17	0.260	0.0017	786
0.09	0.287	0.0012	797
	Average:	0.0024	775
	0.0008	21	

- First order standard deviation is 33% of average and values show a trend
- Second order standard deviation is 3% of average and there does not appear to be a trend
- The second order rate expression is acceptable

Numerical Solution of Initial Value ODEs

- Sets of initial value ODEs

$$
\begin{array}{cc}
\frac{d z_{1}}{d t}=f_{1}\left(t, z_{1}, z_{2}, \cdots, z_{n}\right) ; & z_{1}\left(t_{0}\right)=z_{1}^{0} \\
\frac{d z_{2}}{d t}=f_{2}\left(t, z_{1}, z_{2}, \cdots, z_{n}\right) ; & z_{2}\left(t_{0}\right)=z_{2}^{0} \\
\vdots & \\
\frac{d z_{n}}{d t}=f_{n}\left(t, z_{1}, z_{2}, \cdots, z_{n}\right) ; & z_{n}\left(t_{0}\right)=z_{n}^{0}
\end{array}
$$

- Critical distinction - value of every dependent variable is known at the same value of the independent variable (t_{o})
- Also know the "final" value of t or one of the z_{i}; solve for the corresponding unknown values of all the other variables
- Approach
- Approximate the z_{i} over a small range of t from t_{0} to $t_{0}+h$ using a convenient mathematical function (e. g. linear)
- Approximate constants in the chosen mathematical function (e. g. slope in a linear function) using the equations being solved
- Calculate the values of the z_{i} at $t=t_{0}+h$ using the approximate equations
- Use the result as the new value of t_{0} and repeat many times until t or z_{i} reaches its known "final" value

Numerical Solution of Initial Value ODEs

- Known Issues
- Generally the smaller the "step size," h, the greater the accuracy
- but if h becomes too small, numerical roundoff will introduce significant errors
- Stiff ODEs
- One dependent variable changes very abruptly over a very small range of the independent variable
- The changes in that variable affect the changes in other dependent variables over a much larger range of the independent variable
- Many different variations on the approach
- Runge-Kutta is arguably the most popular for non-stiff equations
- Special methods are required when solving stiff equations
- MATLAB provides several different built in functions
- ode45 can be used for non-stiff equations; it implements the Runge-Kutta method
- ode15s can be used of stiff equations
- By default the built in solvers assume that the final value of t is known
- An additional termination criterion can be specified where the equations are solved until one of the z_{i} reaches a known final value
- A final value of t still must be specified
- zi must reach its final value before t reaches the final value specified for it
- Template files named SolvIVDifl.m and SolvIVDifD.m are provided with instructions for their use
- SolvIVDifl.m when the final value of independent variable is known
- SolvIVDifD.m when the final value of one of the dependent variables is known

Problem Statement

In equations (1) and (2), A is a constant with a value of 0.1597 . Calculate the value of t at which z_{1} equals half its initial value and the ratio of z_{1} to z_{2} at this t .
$\frac{d z_{1}}{d t}=-A \frac{z_{1}}{z_{1}+z_{2}} ; \quad z_{1}(0)=0.103$
$\frac{d z_{2}}{d t}=0.5 A \frac{z_{1}}{z_{1}+z_{2}} ; \quad z_{2}(0)=0.0$

- The equations are ordinary differential equations; both boundary conditions are specified at $t=0$, making them initial value ODEs
- The MATLAB template file, SolvIVDifD.m can be used to solve the equations because the final value of a dependent variable is known
- Follow the step-by-step instructions for the modification and use of SolvIVDifD.m
- Save a copy of the template file as S5_Example_2
- Change the introductory comment to reflect the purpose of this modified file
- Change the function statement to match the filename
- First required modification
- Enter values of all constants involved in the problem
- Here only one constant, $\mathrm{A}=0.1597$

Required Modifications

\%
\% This file requires six modifications before each use; the locations
\% where editing is required are indicated by the comment "\% EDIT HERE"
\%
function [t_f,z] = SolvIVDifD
\% Known quantities and constants (in consistent units)
\% EDIT HERE (Required modification 1 of 6):
\% define universal and problem-specific constants here

- Modify internal function odeqns so it evaluates the functions, f

$$
\begin{aligned}
& \frac{d z_{1}}{d t}=f_{1}\left(t, z_{1}, z_{2}\right)=-A \frac{z_{1}}{z_{1}+z_{2}} \\
& \frac{d z_{2}}{d t}=f_{2}\left(t, z_{1}, z_{2}\right)=0.5 A \frac{z_{1}}{z_{1}+z_{2}}
\end{aligned}
$$

```
% Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
% EDIT HERE (Required modification 2 of 6):
        dzdt = [
            % Evaluate dzl/dt = f1(t, z1, z2, z3, ..., zn) here
            % Evaluate dz2/dt = f2(t, z1, z2, z3, ..., zn) here
            % and so on through fn, one per line
        ];
    end % of internal function odeqns
```


Required Modifications

- Provide the initial conditions: $z_{1}(0)=0.103 \quad z_{2}(0)=0.0$

```
% Initial values
t0 = 0.0;
z0 = [
    0.103
    0.0
];
```

- Provide the termination conditions
- Want to stop because z_{1} reaches one half of $z_{1}(0)$ so set tf to a very large number

```
tf = 1000.0;
```


Required Modifications

- Enter and expression that will cause stop_when to equal zero when z1 reaches its final value: $z_{1}-\frac{z_{1}(0)}{2}$

```
% Function that provides the integration stopping criterion
function [stop_when, isterminal, direction] = stop(t,z)
    isterminal = 1;
    direction = 0;
    % The variable stop_when should equal zero when the desired
    % stopping criterion is reached
    stop_when = z(1)-z0(1)/2.0;
end % of internal function stop
```

- Final required modification
- Perform any additional calculations using the results of solving the ODEs
- Here asked to calculate the ratio of z_{2} to z_{1}

```
% calculate the ratio of z2 to z1
ratio = z(2)/z(1)
```


Where We're Going

- Part I - Chemical Reactions
- Part II - Chemical Reaction Kinetics
- A. Rate Expressions
- B. Kinetics Experiments
- C. Analysis of Kinetics Data
- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis
- Part III-Chemical Reaction Engineering
- A. Ideal Reactors
- 17. Reactor Models and Reaction Types
- B. Perfectly Mixed Batch Reactors
- C. Continuous Flow Stirred Tank Reactors
- D. Plug Flow Reactors
- E. Matching Reactors to Reactions
- Part IV - Non-Ideal Reactions and Reactors

