
A First Course on Kinetics and Reaction 
Engineering

Class 16 on Unit 16



Where We’re Going

• Part I - Chemical Reactions
• Part II - Chemical Reaction Kinetics

‣ A. Rate Expressions
‣ B. Kinetics Experiments
‣ C. Analysis of Kinetics Data

- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis

• Part III - Chemical Reaction Engineering
• Part IV - Non-Ideal Reactions and Reactors
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Numerical Least Squares
• When a single-response model equation cannot be linearized, numerical 

least squares may offer a solution
‣ You’ll need to provide the experimental set and response variable data, a guess for each 

model parameter and code that calculates the model predicted response for a data point, given 
the model parameters and the set variable values for that data point

• When a single-response model equation cannot be analytically integrated 
or explicitly solved for the response variable, numerical least squares may 
offer a solution
‣ Also if the model is a set of algebraic equations or a set of initial value, ordinary differential 

equations
‣ The model equation(s) will need to be solved numerically

- In the code above, you will need to call an appropriate equation solver
- You will need to provide additional input items

• guesses for the solution (algebraic equations) or initial/final values (ODEs)

• code to evaluate the equations being solved
‣ The code you provide above must use these results to calculate the model predicted response

• Trade-offs
‣ Linear least squares requires analytical integration (for ODE models), linearization and 

calculation of re-defined set and response variables, but the parameters are calculated directly
‣ Numerical least squares eliminates the need to integrate ODEs, linearize equations and 

calculate re-defined variables, but finding the parameters requires a guess
- If the guess is not close enough, the method may fail to find values for the parameters
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Analyzing Multiple Response Data

• When multiple response data are involved
‣ You can’t use numerical least squares fitting routines provided by common mathematics software packages

- they are written to minimize the sum of the squares of the errors in a single response variable 
‣ Instead, you will need to

- decide what objective function is an appropriate replacement for the sum of the squares of the errors and 
provide code to calculate it, given the experimental and model-predicted responses

- use a numerical minimization routine instead of a numerical least squares routine
• most mathematics software packages provide several

- calculate statistical quantities such as correlation coefficients and 95% confidence intervals yourself

• The solution of the model equations and calculation of the model-predicted response can 
be done numerically as described on the last slide.

• A simple sum of the squares of the errors of all responses is almost never the appropriate 
objective function to minimize when finding the best values for the parameters

‣ i. e. do not use

• If every response has been measured in every experiment (dense response matrix) and the 
errors can be assumed to be Normally distributed, minimize this determinant
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Questions?
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The gas phase, isothermal decomposition 
shown in  reaction (1), was studied at 
1150 K and 1 atm pressure using a PFR.

2 A → 2 Y + Z! (1)

The feed was pure A, and the tubular 
reactor had a volume of 150 cm3. The inlet 
flow rate was varied and the outlet partial 
pressure of Z was measured. The data are 
tabulated in the table to the right.

Group 1: Test the adequacy of rA = −k⋅CA 
as a rate expression.

Group 2: Test the adequacy of rA = −k⋅CA2 
as a rate expression.

Activity 15.2

Inlet Feed Rate
(cm3 min-1)

Outlet Mole
Fraction of Z

2.26 0.088

1.23 0.131

0.73 0.166

0.51 0.195

0.29 0.228

0.17 0.260

0.09 0.287
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• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable
• Write the mole balance design equation for the reactor used in the 

experiments
• Substitute the rate expression to be tested into the design equation
• Integrate the mole balance

‣ Identify the dependent and independent variables
‣ Identify any other variable quantities appearing in the mole balance 
‣ Express the other variables in terms of the dependent variable and the independent variable
‣ Substitute for the other variables in the design equation so only the dependent and 

independent variables remain
‣ Separate the variables
‣ Integrate the design equation

• Linearize the integrated design equation
• Calculate the values of y and x for each experimental data point
• Fit the linear model to the corresponding x-y data
• Decide if the fit is acceptable and report the values and uncertainties for 

the kinetic parameters
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Mole Balance Design Equation
• Mole balance on A: 

• Substitute the rate expressions

• Prepare for integration
‣ Definition of concentration and ideal gas law:
‣ Mole table or definition of extent of reaction

-  

-  
‣  Substituting

• Separate the variables and integrate 
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• Neither equation can be properly linearized for fitting by linear least 
squares
• Each equation has only one parameter, k

‣ Rearrange to get expression for k
‣ Calculate value of k for each data point
‣ Find average k and its standard deviation
‣ Check that standard deviation is small compared to average and there are no trends in the 

differences between individual k values and the average

• To calculate k
‣ P and T are given, R is a known universal constant
‣ Note that π⋅D2⋅L = 4⋅V, and V is given

‣ Feed is pure A, so 

‣ From mole table or definition of extent of reaction

-                            (previous slide)

-  

 
!nA − !nA

0( )− 3 !nA0 ln !nA!nA0
⎛
⎝⎜

⎞
⎠⎟
= πD2kPL

2RT  
9 !nA

0( )2 1
!nA

− 1
!nA
0

⎛
⎝⎜

⎞
⎠⎟
+ 6 !nA

0 ln !nA
!nA
0

⎛
⎝⎜

⎞
⎠⎟
− !nA − !nA

0( ) = −πkL
2

DP
RT

⎛
⎝⎜

⎞
⎠⎟
2

 
!nA
0 = P

!V 0

RT

 
yZ =

!nZ
!ntot

= ξ
!nA

0 + ξ
=

!nA
0 − !nA

2 !nA
0 + !nA

0 − !nA
=
!nA

0 − !nA
3 !nA

0 − !nA
     ⇒      !nA = !nA

0 1− 3yZ
1− yZ

 
ξ =
!nA
0 − !nA
2

9



Results
Inlet Feed Rate

(cm3 min-1)
Outlet Mole
Fraction of Z

First Order k
(min-1)

Second Order k
(cm3 mol -1 min-1)

2.26 0.088 0.0034 753

1.23 0.131 0.0032 787

0.73 0.166 0.0027 759

0.51 0.195 0.0026 797

0.29 0.228 0.0020 750

0.17 0.260 0.0017 786

0.09 0.287 0.0012 797

Average:Average: 0.0024 775

Standard Deviation:Standard Deviation: 0.0008 21

• First order standard deviation is 33% of average and values show a trend
• Second order standard deviation is 3% of average and there does not 

appear to be a trend
• The second order rate expression is acceptable
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Numerical Solution of Initial Value ODEs

• Sets of initial value ODEs

‣  

‣ Critical distinction - value of every dependent variable is known at the same value of the 
independent variable (t0)

‣ Also know the “final” value of t or one of the zi; solve for the corresponding unknown values of 
all the other variables

• Approach
‣ Approximate the zi over a small range of t from t0 to t0 + h using a convenient mathematical 

function (e. g. linear)
‣ Approximate constants in the chosen mathematical function (e. g. slope in a linear function) 

using the equations being solved
‣ Calculate the values of the zi at t = t0 + h using the approximate equations
‣ Use the result as the new value of t0 and repeat many times until t or zi reaches its known 

“final” value

 

dz1

dt
= f1 t, z1, z2,!, zn( );     z1 t0( ) = z1

0

dz2

dt
= f2 t, z1, z2,!, zn( );     z2 t0( ) = z2

0

"
dzn
dt

= fn t, z1, z2,!, zn( );     zn t0( ) = zn0
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Numerical Solution of Initial Value ODEs

• Known Issues
‣ Generally the smaller the “step size,” h, the greater the accuracy

- but if h becomes too small, numerical roundoff will introduce significant errors
‣ Stiff ODEs

- One dependent variable changes very abruptly over a very small range of the independent 
variable

- The changes in that variable affect the changes in other dependent variables over a much 
larger range of the independent variable

• Many different variations on the approach
‣ Runge-Kutta is arguably the most popular for non-stiff equations
‣ Special methods are required when solving stiff equations

• MATLAB provides several different built in functions
‣ ode45 can be used for non-stiff equations; it implements the Runge-Kutta method
‣ ode15s can be used of stiff equations
‣ By default the built in solvers assume that the final value of t is known

- An additional termination criterion can be specified where the equations are solved until 
one of the zi reaches a known final value
• A final value of t still must be specified
• zi must reach its final value before t reaches the final value specified for it

• Template files named SolvIVDifI.m and SolvIVDifD.m are provided with 
instructions for their use
‣ SolvIVDifI.m when the final value of independent variable is known
‣ SolvIVDifD.m when the final value of one of the dependent variables is known
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Problem Statement

In equations (1) and (2), A is a constant with a value of 0.1597. Calculate the 
value of t at which z1 equals half its initial value and the ratio of z1 to z2 at 
this t.

! (1)

! (2)

• The equations are ordinary differential equations; both boundary 
conditions are specified at t = 0, making them initial value ODEs
• The MATLAB template file, SolvIVDifD.m can be used to solve the 

equations because the final value of a dependent variable is known
‣ Follow the step-by-step instructions for the modification and use of SolvIVDifD.m
‣ Save a copy of the template file as S5_Example_2

- Change the introductory comment to reflect the purpose of this modified file
- Change the function statement to match the filename

• First required modification
‣ Enter values of all constants involved in the problem
‣ Here only one constant, A = 0.1597

dz1

dt
= −A z1

z1 + z2

  ;      z1 0( ) = 0.103

dz2

dt
= 0.5A z1

z1 + z2

  ;      z2 0( ) = 0.0
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% Modified version of the MATLAB template file SolvDifIV.m used to solve
% Example 2 of Supplemental Unit S5 of "A First Course on Kinetics and
% Reaction Engineering."
%
function [t_f,z] = S5_Example_2
    % Known quantities and constants (in consistent units)
    A = 0.1597;

%
% This file requires six modifications before each use; the locations
% where editing is required are indicated by the comment "% EDIT HERE"
%
function [t_f,z] = SolvIVDifD
    % Known quantities and constants (in consistent units)
% EDIT HERE (Required modification 1 of 6):
    % define universal and problem-specific constants here• Modify internal function odeqns so it evaluates the functions, f

dz1
dt

= f1 t, z1,z2( ) = −A z1
z1 + z2

Required Modifications

dz2
dt

= f2 t, z1, z2( ) = 0.5A z1
z1 + z2

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        dzdt = [
            -A*z(1)/(z(1) + z(2))
            0.5*A*z(1)/(z(1) + z(2))
        ];
    end % of internal function odeqns

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
% EDIT HERE (Required modification 2 of 6):
        dzdt = [
            % Evaluate dz1/dt = f1(t, z1, z2, z3, ..., zn) here
            % Evaluate dz2/dt = f2(t, z1, z2, z3, ..., zn) here
            % and so on through fn, one per line
        ];
    end % of internal function odeqns
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Required Modifications

• Provide the initial conditions:

•  Provide the termination conditions
‣ Want to stop because z1 reaches one half of z1(0) so set tf to a very large number

    % Initial values
% EDIT HERE (Required modification 3 of 6):
    t0 = ;% insert the initial value of independent variable here
    z0 = [
        % insert the initial values of dependent variables z1 here
        % insert initial values for z2, z3, ..., one per line
    ];

z1 0( ) = 0.103 z2 0( ) = 0.0
    % Initial values
    t0 = 0.0;
    z0 = [
        0.103
        0.0
    ];

% EDIT HERE (Required modification 4 of 6):
    % Set the final value, tf, of the independent variable on the next
    % line to a value that is sufficiently large to cause the known final
    % dependent variable value to be reached before the independent
    % variable reaches tf.
    
    tf = ;% insert a large number, as just instructed

    tf = 1000.0;
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    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        
% EDIT HERE (Required modification 5 of 6) The variable stop_when should 
% equal zero when the desired stopping criterion is reached
        stop_when = ;% replace this comment with the stopping criterion
    end % of internal function stop

• Enter and expression that will cause stop_when to equal zero when z1 

reaches its final value:

• Final required modification
‣ Perform any additional calculations using the results of solving the ODEs
‣ Here asked to calculate the ratio of z2 to z1

Required Modifications

    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        
        % The variable stop_when should equal zero when the desired
        % stopping criterion is reached
        stop_when = z(1)-z0(1)/2.0;
    end % of internal function stop

z1 −
z1 0( )
2

% EDIT HERE (Required modification 6 of 6):
    % Enter code to calculate any other desired quantities using the 
    % results contained in z. (Alternatively, z will be returned when this
    % template file terminates; other quantities can then be calculated
    % at the MATLAB command prompt using the returned values

    % calculate the ratio of z2 to z1
    ratio = z(2)/z(1)
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Where We’re Going

• Part I - Chemical Reactions
• Part II - Chemical Reaction Kinetics

‣ A. Rate Expressions
‣ B. Kinetics Experiments
‣ C. Analysis of Kinetics Data

- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis

• Part III - Chemical Reaction Engineering
‣ A. Ideal Reactors

- 17. Reactor Models and Reaction Types
‣ B. Perfectly Mixed Batch Reactors
‣ C. Continuous Flow Stirred Tank Reactors
‣ D. Plug Flow Reactors
‣ E. Matching Reactors to Reactions

• Part IV - Non-Ideal Reactions and Reactors
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