A First Course on Kinetics and Reaction Engineering

Class 16 on Unit 16

Where We're Going

• Part I - Chemical Reactions

• Part II - Chemical Reaction Kinetics

- ▶ A. Rate Expressions
- B. Kinetics Experiments
- C. Analysis of Kinetics Data
 - 13. CSTR Data Analysis
 - 14. Differential Data Analysis
 - 15. Integral Data Analysis
 - 16. Numerical Data Analysis
- Part III Chemical Reaction Engineering
- Part IV Non-Ideal Reactions and Reactors

Numerical Least Squares

- When a single-response model equation cannot be linearized, numerical least squares may offer a solution
 - You'll need to provide the experimental set and response variable data, a guess for each model parameter and code that calculates the model predicted response for a data point, given the model parameters and the set variable values for that data point
- When a single-response model equation cannot be analytically integrated or explicitly solved for the response variable, numerical least squares may offer a solution
 - Also if the model is a set of algebraic equations or a set of initial value, ordinary differential equations
 - The model equation(s) will need to be solved numerically
 - In the code above, you will need to call an appropriate equation solver
 - You will need to provide additional input items
 - guesses for the solution (algebraic equations) or initial/final values (ODEs)
 - code to evaluate the equations being solved
 - The code you provide above must use these results to calculate the model predicted response
- Trade-offs
 - Linear least squares requires analytical integration (for ODE models), linearization and calculation of re-defined set and response variables, but the parameters are calculated directly
 - Numerical least squares eliminates the need to integrate ODEs, linearize equations and calculate re-defined variables, but finding the parameters requires a guess
 - If the guess is not close enough, the method may fail to find values for the parameters

Analyzing Multiple Response Data

• When multiple response data are involved

- > You can't use numerical least squares fitting routines provided by common mathematics software packages
 - they are written to minimize the sum of the squares of the errors in a single response variable
- Instead, you will need to
 - decide what objective function is an appropriate replacement for the sum of the squares of the errors and provide code to calculate it, given the experimental and model-predicted responses
 - use a numerical minimization routine instead of a numerical least squares routine
 - most mathematics software packages provide several
 - calculate statistical quantities such as correlation coefficients and 95% confidence intervals yourself
- The solution of the model equations and calculation of the model-predicted response can be done numerically as described on the last slide.
- A simple sum of the squares of the errors of all responses is *almost never the appropriate objective* function to minimize when finding the best values for the parameters

• i. e. do not use
$$\Phi = \sum_{\substack{j=\text{ all} \\ \text{data} \\ \text{points}}} \left[\left(y_{1,\text{model}} - y_{1,\text{expt.}} \right)_j^2 + \left(y_{2,\text{model}} - y_{2,\text{expt.}} \right)_j^2 \right]$$

• If every response has been measured in every experiment (dense response matrix) and the errors can be assumed to be Normally distributed, minimize this determinant

$$\Phi = \begin{vmatrix} \sum_{\text{all } j} (\varepsilon_{1j})^2 & \sum_{\text{all } j} \varepsilon_{1j} \varepsilon_{2j} & \cdots & \sum_{\text{all } j} \varepsilon_{1j} \varepsilon_{nj} \\ \sum_{\text{all } j} \varepsilon_{1j} \varepsilon_{2j} & \sum_{\text{all } j} (\varepsilon_{2j})^2 & \cdots & \sum_{\text{all } j} \varepsilon_{2j} \varepsilon_{nj} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{\text{all } j} \varepsilon_{1j} \varepsilon_{nj} & \sum_{\text{all } j} \varepsilon_{2j} \varepsilon_{nj} & \cdots & \sum_{\text{all } j} (\varepsilon_{nj})^2 \end{vmatrix}$$

$$\varepsilon_{ij} = (y_{i,\text{model}} - y_{i,\text{expt.}})_j$$

4

Activity 15.2

The gas phase, isothermal decomposition shown in reaction (1), was studied at 1150 K and 1 atm pressure using a PFR.

$$2 A \rightarrow 2 Y + Z \tag{1}$$

The feed was pure A, and the tubular reactor had a volume of 150 cm³. The inlet flow rate was varied and the outlet partial pressure of Z was measured. The data are tabulated in the table to the right.

Group 1: Test the adequacy of $r_A = -k \cdot C_A$ as a rate expression.

Group 2: Test the adequacy of $r_A = -k \cdot C_A^2$ as a rate expression.

Inlet Feed Rate (cm ³ min ⁻¹)	Outlet Mole Fraction of Z	
2.26	0.088	
1.23	0.131	
0.73	0.166	
0.51	0.195	
0.29	0.228	
0.17	0.260	
0.09	0.287	

Recall the Solution Process from Class 15

- Read through the problem statement and each time you encounter a quantity, assign it to the appropriate variable
- Write the mole balance design equation for the reactor used in the experiments
- Substitute the rate expression to be tested into the design equation
- Integrate the mole balance
 - Identify the dependent and independent variables
 - Identify any other variable quantities appearing in the mole balance
 - Express the other variables in terms of the dependent variable and the independent variable
 - Substitute for the other variables in the design equation so only the dependent and independent variables remain
 - Separate the variables
 - Integrate the design equation
- Linearize the integrated design equation
- Calculate the values of y and x for each experimental data point
- Fit the linear model to the corresponding x-y data
- Decide if the fit is acceptable and report the values and uncertainties for the kinetic parameters

Mole Balance Design Equation

- Mole balance on A: $\frac{d\dot{n}_A}{dz} = \frac{\pi D^2}{4}r_A$
- Substitute the rate expressions

$$\frac{d\dot{n}_A}{dz} = \frac{-\pi D^2}{4} kC_A$$

- Prepare for integration
 - Definition of concentration and ideal gas law: C_A =
 - Mole table or definition of extent of reaction

$$\dot{n}_{A} = \dot{n}_{A}^{0} - 2\xi \qquad \Rightarrow \qquad \xi = \frac{\dot{n}_{A}^{0} - \dot{n}_{A}}{2}$$

$$\dot{n}_{tot} = \dot{n}_{A}^{0} + \xi \qquad \Rightarrow \qquad \dot{n}_{tot} = \frac{3\dot{n}_{A}^{0} - \dot{n}_{A}}{2}$$

Substituting

$$\frac{d\dot{n}_A}{dz} = \frac{-\pi D^2 k P}{2RT} \frac{\dot{n}_A}{3\dot{n}_A^0 - \dot{n}_A}$$

Separate the variables and integrate

$$\int_{n_{A}^{0}}^{n_{A}} \frac{3\dot{n}_{A}^{0} - \dot{n}_{A}}{\dot{n}_{A}} d\dot{n}_{A} = \frac{-\pi D^{2} kP}{2RT} \int_{0}^{L} dz$$
$$\left(\dot{n}_{A} - \dot{n}_{A}^{0}\right) - 3\dot{n}_{A}^{0} \ln\left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right) = \frac{\pi D^{2} kPL}{2RT}$$

$$\frac{d\dot{n}_{A}}{dz} = \frac{-\pi D^{2}}{4} kC_{A}^{2}$$

$$= \frac{\dot{n}_{A}}{\dot{V}} = \frac{\dot{n}_{A}P}{\dot{n}_{tot}RT}$$

$$\frac{d\dot{n}_{A}}{dz} = \frac{-\pi D^{2}kP^{2}}{R^{2}T^{2}} \frac{\dot{n}_{A}^{2}}{\left(3\dot{n}_{A}^{0} - \dot{n}_{A}\right)^{2}}$$

$$\int_{\eta_{A}^{0}}^{\eta_{A}} \left(\frac{3\dot{n}_{A}^{0} - \dot{n}_{A}}{\dot{n}_{A}}\right)^{2} d\dot{n}_{A} = \frac{-\pi k}{2} \left(\frac{DP}{RT}\right)^{2} \int_{0}^{L} dz$$

$$9\left(\dot{n}_{A}^{0}\right)^{2} \left(\frac{1}{\dot{n}_{A}} - \frac{1}{\dot{n}_{A}^{0}}\right) + 6\dot{n}_{A}^{0} \ln\left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right) - \left(\dot{n}_{A} - \dot{n}_{A}^{0}\right)$$

$$= -\pi kL \left(DP\right)^{2}$$

2

RT

$$\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right)-3\dot{n}_{A}^{0}\ln\left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)=\frac{\pi D^{2}kPL}{2RT} \qquad 9\left(\dot{n}_{A}^{0}\right)^{2}\left(\frac{1}{\dot{n}_{A}}-\frac{1}{\dot{n}_{A}^{0}}\right)+6\dot{n}_{A}^{0}\ln\left(\frac{\dot{n}_{A}}{\dot{n}_{A}^{0}}\right)-\left(\dot{n}_{A}-\dot{n}_{A}^{0}\right)=\frac{-\pi kL}{2}\left(\frac{DP}{RT}\right)^{2}$$

- Neither equation can be properly linearized for fitting by linear least squares
- Each equation has only one parameter, k
 - Rearrange to get expression for *k*
 - Calculate value of k for each data point
 - Find average k and its standard deviation
 - Check that standard deviation is small compared to average and there are no trends in the differences between individual k values and the average
- To calculate k
 - P and T are given, R is a known universal constant
 - Note that $\pi \cdot D^2 \cdot L = 4 \cdot V$, and *V* is given
 - Feed is pure A, so $\dot{n}_A^0 = \frac{P\dot{V}^0}{RT}$
 - From mole table or definition of extent of reaction
 - $\xi = \frac{\dot{n}_A^0 \dot{n}_A}{2}$ (previous slide)

$$- y_{Z} = \frac{\dot{n}_{Z}}{\dot{n}_{tot}} = \frac{\xi}{\dot{n}_{A}^{0} + \xi} = \frac{\dot{n}_{A}^{0} - \dot{n}_{A}}{2\dot{n}_{A}^{0} + \dot{n}_{A}^{0} - \dot{n}_{A}} = \frac{\dot{n}_{A}^{0} - \dot{n}_{A}}{3\dot{n}_{A}^{0} - \dot{n}_{A}} \implies \dot{n}_{A} = \dot{n}_{A}^{0} \frac{1 - 3y_{Z}}{1 - y_{Z}}$$

Results

Inlet Feed Rate (cm ³ min ⁻¹)	Outlet Mole Fraction of Z	First Order k (min ⁻¹)	Second Order k (cm ³ mol ⁻¹ min ⁻¹)
2.26	0.088	0.0034	753
1.23	0.131	0.0032	787
0.73	0.166	0.0027	759
0.51	0.195	0.0026	797
0.29	0.228	0.0020	750
0.17	0.260	0.0017	786
0.09	0.287	0.0012	797
Average:		0.0024	775
Standard Deviation:		0.0008	21

- First order standard deviation is 33% of average and values show a trend
- Second order standard deviation is 3% of average and there does not appear to be a trend
- The second order rate expression is acceptable

Numerical Solution of Initial Value ODEs

- Sets of initial value ODEs
 - $\frac{dz_1}{dt} = f_1(t, z_1, z_2, \dots, z_n); \quad z_1(t_0) = z_1^0$ $\frac{dz_2}{dt} = f_2(t, z_1, z_2, \dots, z_n); \quad z_2(t_0) = z_2^0$ \vdots $\frac{dz_n}{dt} = f_n(t, z_1, z_2, \dots, z_n); \quad z_n(t_0) = z_n^0$
 - Critical distinction value of every dependent variable is known at the same value of the independent variable (t₀)
 - Also know the "final" value of t or one of the z_i; solve for the corresponding unknown values of all the other variables
- Approach
 - Approximate the z_i over a small range of t from t₀ to t₀ + h using a convenient mathematical function (e. g. linear)
 - Approximate constants in the chosen mathematical function (e. g. slope in a linear function) using the equations being solved
 - Calculate the values of the z_i at $t = t_0 + h$ using the approximate equations
 - Use the result as the new value of t_0 and repeat many times until t or z_i reaches its known "final" value

Numerical Solution of Initial Value ODEs

• Known Issues

- Generally the smaller the "step size," h, the greater the accuracy
 - but if h becomes too small, numerical roundoff will introduce significant errors
- Stiff ODEs
 - One dependent variable changes very abruptly over a very small range of the independent variable
 - The changes in that variable affect the changes in other dependent variables over a much larger range of the independent variable
- Many different variations on the approach
 - Runge-Kutta is arguably the most popular for non-stiff equations
 - Special methods are required when solving stiff equations
- MATLAB provides several different built in functions
 - ode45 can be used for non-stiff equations; it implements the Runge-Kutta method
 - ode15s can be used of stiff equations
 - By default the built in solvers assume that the final value of t is known
 - An additional termination criterion can be specified where the equations are solved until one of the z_i reaches a known final value
 - A final value of t still must be specified
 - zi must reach its final value before t reaches the final value specified for it
- Template files named SolvIVDifI.m and SolvIVDifD.m are provided with instructions for their use
 - SolvIVDifl.m when the final value of independent variable is known
 - SolvIVDifD.m when the final value of one of the dependent variables is known

Problem Statement

In equations (1) and (2), A is a constant with a value of 0.1597. Calculate the value of t at which z_1 equals half its initial value and the ratio of z_1 to z_2 at this t.

$$\frac{dz_1}{dt} = -A \frac{z_1}{z_1 + z_2} ; \quad z_1(0) = 0.103$$

$$\frac{dz_2}{z_1} = 0.5A \frac{z_1}{z_1} ; \quad z_2(0) = 0.0$$
(2)

- The equations are ordinary differential equations; both boundary conditions are specified at t = 0, making them initial value ODEs
- The MATLAB template file, SolvIVDifD.m can be used to solve the equations because the final value of a dependent variable is known
 - Follow the step-by-step instructions for the modification and use of SolvIVDifD.m
 - Save a copy of the template file as S5_Example_2
 - Change the introductory comment to reflect the purpose of this modified file
 - Change the function statement to match the filename
- First required modification

 $z_1 + z_2$

- Enter values of all constants involved in the problem
- Here only one constant, A = 0.1597

dt

Required Modifications

Required Modifications

• Provide the initial conditions: $z_1(0) = 0.103$ $z_2(0) = 0.0$

- Provide the termination conditions
 - Want to stop because z_1 reaches one half of $z_1(0)$ so set tf to a very large number

```
tf = 1000.0;
```


Required Modifications

• Enter and expression that will cause stop_when to equal zero when z1 reaches its final value: $z_1 - \frac{z_1(0)}{2}$

```
% Function that provides the integration stopping criterion
function [stop_when, isterminal, direction] = stop(t,z)
    isterminal = 1;
    direction = 0;
```

```
% The variable stop_when should equal zero when the desired
% stopping criterion is reached
stop_when = z(1)-z0(1)/2.0;
end % of internal function stop
```

- Final required modification
 - Perform any additional calculations using the results of solving the ODEs
 - Here asked to calculate the ratio of z₂ to z₁

```
% calculate the ratio of z2 to z1 ratio = z(2)/z(1)
```


Where We're Going

• Part I - Chemical Reactions

• Part II - Chemical Reaction Kinetics

- ▶ A. Rate Expressions
- B. Kinetics Experiments
- C. Analysis of Kinetics Data
 - 13. CSTR Data Analysis
 - 14. Differential Data Analysis
 - 15. Integral Data Analysis
 - 16. Numerical Data Analysis

• Part III - Chemical Reaction Engineering

- A. Ideal Reactors
 - 17. Reactor Models and Reaction Types
- B. Perfectly Mixed Batch Reactors
- C. Continuous Flow Stirred Tank Reactors
- D. Plug Flow Reactors
- E. Matching Reactors to Reactions
- Part IV Non-Ideal Reactions and Reactors

